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The motion of a spherical pendulum whose point of suspension performs high-frequency vertical harmonic oscillations of small 
amplitude is investigated. It is shown that two types of motion of the pendulum exist when it performs high-frequency oscillations 
close to conical motions, for which the pendulum makes a constant angle with the vertical and rotates around it with constant 
angular velocity. For the motions of the first and second types the centre of gravity of the pendulum is situated below and above 
the point of suspension, respectively. A bifurcation curve is obtained, which divides the plane of the parameters of the problem 
into two regions. In one of these only the first type of motion can exist, while in the other, in addition to the first type of motion, 
there are two motions of the second type. The problem of the stability of these motions of the pendulum, close to conical, is 
solved. It is shown that the first type of motion is stable, while of the second type of motion, only the motion with the higher 
position of the centre of gravity is stable. © 1999 Elsevier Science Ltd. All rights reserved. 

Quite a large number of investigations have been devoted to the problem of the dynamics of a pendulum 
with a vibrating point of suspension (an extensive bibliography can be found, for example, in [1]). At 
the beginning of the present century the problem of finding whether dynamic stabilization of an inverted 
pendulum was possible by means of vertical vibration of its point of an inverted pendulum was possible 
by means of vertical vibration of its point of suspension [5] was considered in detail in [2-4]. A complete 
solution of the problem of the stability of vertical relative equilibria of a mathematical pendulum, the 
point of suspension of which executes vertical harmonic oscillations of arbitrary frequency and amplitude 
was obtained in [6]. 

1. THE H A M I L T O N  F U N C T I O N  

Consider a spherical pendulum, which is an absolutely solid weightless rod of length l, which performs 
spatial motion around one of its ends and carries a point mass m at the other end. The point of suspension 
O of the pendulum executes harmonic oscillations along the vertical of amplitude A and frequency f2: 

= A cos D,t, where ~ is the displacement of the point of suspension from a certain fixed position O 
(Fig. 1). 

We will use the spherical coordinates 0, q0 as the generalized coordinates. Supposep0,p~ are the corres- 
ponding generalized momenta, which are made dimensionless by using the factor m12~, while 

= D,t is the dimensionless time. We then have the following expression for the Hamilton function 

1 ½ 2 
H=-~(po-e2sinxsinO) 2- B2 cos04 P* 

2 sin 20 
(1.1) 

Quantities in (1.1) that are independent of the coordinates and the momenta are dropped. 
The coordinate ~0 is cyclical. We will write the integral corresponding to it in the form 

2p~ = cx 2, p~ = sin 20dtpldx (ct = const) (1.2) 

Ignoring the cyclical coordinate, we obtain a reduced system with one degree of freedom. Its canonical 
conjugate variables are the quantities 0, P0, while the constant ct plays the role of the parameter. We 
will assume that ct ~ 0, since, when c~ = 0, the angle ~0 is constant and the spherical pendulum moves 
in a fixed vertical plane like a mathematical pendulum. 
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We will continue our investigation with the following assumptions. We will assume that the amplitude 
A of the oscillations of the point of suspension is small compared with the length I of the pendulum; 
this means that the quantity e in (1.1) is a small parameter (0 < e ~ 1). We will also assume that the 
frequency f~ of the oscillations of the point of suspension is high compared with the frequency ~[(g/l) 
of the small oscillations of a mathematical pendulum; to fix our ideas we will assume that ~/0g/(fl2/)) < 
e2. Moreover, we will further assume that the angular velocity of rotation of the pendulum around the 
vertical is small compared with f2. 

Taking these assumptions into account, we introduce the notation o~ 2 = eaa, [32 -- cab. The Hamilton 
function (1.1) can then be written in the form 

1 H=_~(p ° _ E2 sin xsin 0)2 _ l ¢ 4 b c o s 0 +  e4 a 
2 4sin 2 0 

The following limits hold for the parameters a and b 

(1.3) 

0 < a  < 2 / s in400  , 0 < b < 2  
g ~, dt Jo 

The subscript zero denotes the initial values of the corresponding quantities. 

2. S I M P L I F I C A T I O N  OF THE H A M I L T O N  F U N C T I O N  

To investigate the motion of the pendulum for small e, we will use the methods of perturbation theory 
[7]. It is convenient first of all to make the canonical replacement of variables 

O = s ,  PO = E r  ( 2 . 1 )  

The following Hamiltonian corresponds to the equations of motion in the new variables 

H = fern2 -E2 sinxrsins + l e 3 (  a-----~ - - 4  ksin" s 2bcoss + 2sin 2 xsin 2 s) (2.2) 

Using the canonical replacement of variables s, r ~ u, ~ we can simplify the Hamilton function (2.2) 
so that it does not contain the time x in terms up to the third power of e inclusive. To construct this 
replacement of variables we will use the classical perturbation theory or some modern version of it, for 
example, the Depri-Hori method [7]. Calculations show that the required replacement is given by the 
formulae 

s = u + ~2 cos x sin u - 2e 3 sin xu cos u + O(E 4) 

= u - e 2 cos xu cos u + I e3 (sin 2~ sin 2u - 8 sin xu 2 sin u) + O(~ 4 r ) 

(2.3) 

while the converted Hamilton function has the following form 
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H = I E u 2 2 + 1 ~ 3 (  a _ 2 b c o s u + s i n 2 4  ~.sin 2u u) +O(e4) (2.4) 

In the further calculations it is more convenient to use, instead of the variables u and ~, the canonically 
conjugate variables x and y, given by the equations 

x = cos u, u = -y sin u (2.5) 

In the x, y variables the Hamilton function (2.4) takes the following form 

H = I e ( l  - x 2 )y2 + ~:3 H + O(e4 )  (2 .6 )  
2 

3. THE B I F U R C A T I O N  CURVE 

If we neglect the quantity O(e 4) in Hamiltonian (2.6), we obtain an autonomous Hamilton system, 
integrable in quadratures. Without dwelling on the general solution of this approximate system, we will 
only consider the problem of the existence of its equilibrium positionsx = const, y = 0. The equilibrium 
values ofx  are the real roots of the equation 0I-l/0x = 0, which, according to the first of formulae (2.5), 
lie in the range (-1, 1). 

We will analyse the equation 0I-l/Ox = 0 graphically. To do this, we will write it in the form z l (x)  = 
z2(x), where 

x b x 
zl=--+-- ,a  a z 2 = ~  (3.1) 

and in the x, z plane we will consider the graphs of the functions z = ZI(X), Z = Z2(X ).  
The straight line z = zl(x)  contains two positive parameters a and b, and, for values ofx  in the range 

(-1, 1), intersects the curve z = z2(x) either at a single point, for which x = xl > 0, or at three points, 
corresponding to the three values ofx i  (i = 1, 2, 3), which satisfy the inequalities -1 < x3 < x2 < 0 < 
xl < 1. The point P in Fig. 2 corresponds to bifurcation values of the parameters a and b. At this point 
the straight line z = Zl(X) intersects the curve z = z2(x), i.e. at the point P the two relations Zl = z2 and 
dzl/dX --- dz2/dx are satisfied simultaneously. Taking (3.1) into account, these relations can be written 
in the form of the equations 

f (x)  - x 5 + bx4-2 xa-2 bx 2 + (l-a)x + b = 0 

g(x) ~ 4 ~  + 3bx 2 + b = 0 

(3.2) 

The polynomialsf  and g have a common root at the critical point P. This is possible if and only if the 
resultant R(f, g) of these polynomials is equal to zero [8]. The resultant is a function of the parameters 
a and b and, as calculations show, it can be represented in the form R(f, g) = -bF(a,  b), where 

F(a, b) = 256b 6 + 3(9a2-32a-256)b4-96(a2-29a--8)b 2 + 256(a-1) 3 

Since b # 0, the resultant vanishes only when F(a, b) --- 0. In the a, b plane the curve F(a, b) = 0 is 
a bifurcation curve. On passing through it the number of equilibrium positions of the approximate system 
changes. The region a > 0, 2 > b > 0 of permissible values of the parameters a and b is split by the 
bifurcation curve into two regions G1 and G 3 (Fig. 3). In region G1 there is one equilibrium position 
in which x = xl > 0, while in the region G 3 there are three equilibrium positions for which x - xi 
( i = 1 , 2 , 3 ) , - 1  < x  3 < x 2 < 0 < x  1<  1. 

4. P E R I O D I C  S O L U T I O N S  OF THE R E D U C E D  SYSTEM 

We will now consider the reduced system with complete Hamiltonian (2.6). The approximate system 
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for it is unperturbed. In the neighbourhood of the equilibrium positions x = const, y = 0, investigated 
in Section 3, the complete system can be regarded as quasilinear with perturbations that are 2n-periodic 
in x, the order of which with respect to ¢ is higher than three. 

The characteristic equation of the unperturbed system, linearized in the neighbourhood of the 
equilibrium position, has the form 

~2.1.1~4(1_X?)~2 = 0 ,  "~2---- 
4x 3 + 3bx2i + b 

2 x i 0  - x ? )  
(4.1) 

Here Y2 is the second derivative of the function FI from (2.6), calculated for x = xi(i = 1, 2, 3). 
Since, for small e, the roots of Eq. (4.1) are small, the non-resonant case of the Poincar6 small-parameter 

method occurs. Hence [9] in the regions G1 and G 3 (Fig. 3) from each equilibrium position, a single 
solution of the system with complete Hamiltonian (2.6) is produced, that is analytic in e and 2n-periodic 
in x. The periodic corrections to the equilibrium values x = x 1, y = 0 are of the order of e 4 and higher. 

Taking into account the replacements of variables (2.1), (2.3) and (2.5), we obtain that for the periodic 
motions of the pendulum considered the quantity P0 is of the order of e 4, while the angle 0 of the 
pendulum with the vertical is given by the equation 

O i = arccosxi +E241 -x 2 cosx+O(E4), i = 1,2,3 
(4.2) 

The quantity O(e 4) in (4.2) is 2n-periodic in x. 

5. THE MOTIONS OF A P E N D U L U M ,  CLOSE TO CONICAL,  
AND T H E I R  STABILITY 

The motions of the pendulum of the initial system with two degrees of freedom, close to conical 
motions, correspond to periodic solutions of (4.2), of the reduced system with one degree of freedom. 
For these motions the angle 0i of the pendulum with the vertical differs only slightly from its constant 
value arccosxi, with the corresponding dimensionless angular velocity d~i/dx of rotation of the pendulum 
around the vertical is found from (1.2) 

d~ i=+e2  ~ =+e2 ~ - a  ~.O(e4) (5.1) 
dx - 2 sin 2 0 i 2(1 - x 2) 

It differs from the constant value by terms of the order of e4, periodic in x. The double sign in (5.1) 
indicates that, for the same value ofxi, two directions of rotation of the pendulum around the vertical 
are possible. 

For the first of the solutions (4.3) we have xl > 0 and, in the corresponding motion, close to conical 
motion, the centre of gravity of the pendulum is below the point of suspension. This motion of the 
pendulum is called motion of the first type. It is the analogue of the conical motion of a spherical 
pendulum with a fixed point of suspension. 

For the other two solutions of (4.2) we have -1 < x3 < x2 < 0. In the corresponding motions of the 
pendulum, close to conical motion, the centre of gravity is above the point of suspension. These motions 
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are called motions of the second type. There is no analogue for these in the problem of the motion of 
a spherical pendulum with a fixed suspension. 

If the values of the parameters a and b lie in the region G 3 (Fig. 3), a single motion of the first type 
and two motions of the second type will exist. On the bifurcation curve the two motions of the second 
type merge and, on passing into the region G 1, they disappear, and one motion of the first type exists 
in the region Gv 

We will use the stability of the motions of the pendulum, close to conical motion, with respect to per- 
turbations of the quantities 0,p0. The solutions x* =xi  + O(e4),y * = O(e 4) of the equations of motion with 
Hamiltonian (2.6), 27z-periodic in t, correspond to these motions. Puttingx = x* + q ,y  = y* + p, we obtain 
the Hamilton function of the perturbed motion in the form of the following series in powers ofq andp 

H=H2+H3+H4+ .... H k =  y. hvla(z)qVp 1~ (5.2) 
v+ll=k 

The coefficient hvr, are functions, 2x-periodic in x, where, with an error of the order of e 4, we have 

~4 1 hi2 = -exi, h40 = --E374, h22 2 • 

(5.3) 

The remaining coefficients of the forms Hk (k = 2, 3, 4) are fourth-order infinitesimals in e. The 
quantity 5'2 which occurs in (5.3) is the defined by the second of Eqs (4.1), while Y3 and Y4 are calculated 
from the formulae 

=6aXi(l+x2i) 5x/4 + 10x2 + i 
~'3 ( i _ x ? ) 4  , )'4 = 6 a  (1_ x2)5 

We will first consider the stability in the linear approximation. We will represent the characteristic 
exponents of the linearized equations of the perturbed motion in the form ~. + O(e4), where ~. is the 
root of Eq. (4.1). Hence, for small E, the problem of stability in the linear approximation is determined 
by the sign of "/2: when ~/2 > 0 there is stability and when Y2 < 0 there is instability. 

For motion of the first typexl > 0, and, taking into account the fact that b is positive, we obtain from 
(4.1) that Y2 > 0 and, consequently, this motion is stable in the linear approximation. 

Each motion of the second type is either stable in the linear approximation everywhere in its region 
of existence G 3 (Fig. 3), or unstable in this region. This follows from the fact thatx2 andx3 are negative 
and, hence, by virtue of (4.1), the problem of stability in the linear approximation is decided by the 
sign of the polynomial g(x) from (3.2), calculated for x = x i  (i = 2, 3): when g(xi) < 0 there is stability 
in the linear approximation and when g(xi) > 0 there is instability. But the quanti tyg(xi)  cannot vanish 
inside the region g3, since otherwise the quantity f(xi) would also vanish there, and according to the 
results obtained in Section 3 the polynomials f and g from (3.2) only vanish simultaneously on the 
bifurcation curve F(a, b) = 0, which separates regions G1 and G 3. 

We will determine the signs of the quantitiesg(xi) (i = 2, 3). As discussed above, to do this it is sufficient 
to consider, for example, the case when a and b lie on the ray a --- b, where 0 < a ,~ 1. We then obtain 
from the equation f (x)  = 0 

x2 = - a  + O(a2 ), x3 ~: - l  +.qt-a l 2 + O(a) 

Therefore 

g(x2) = a + O(a 3) > 0, g(x3) = --4 + O(~a)  < 0 

Hence, everywhere in the region G 3 the quantityg(xz) is positive, while the quantityg(x3) is negative. 
Consequently, motion of the second type, corresponding to x = x 3, is stable in the linear approximation 

everywhere in the region G3, while motion corresponding to x = x 2, is unstable. 
It follows from Lyapunov's theorem on stability in the first approximation [10] that motion of the 

second type, corresponding to x = x 2, is unstable not only in the linear approximation but also in the 
rigorous non-linear formulation of the problem of stability. 
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For a rigorous solution of the problem of the stability of the motions of a pendulum of the first type 
and motions of the second type, corresponding to x = x3, a non-linear analysis is necessary. We will 
carry out this analysis, basing ourselves on the KAM-theory [11, 12]. 

Using a Birkhoff canonical transformation q, p ---> Q, P we reduce the Hamilton function of the 
perturbed motion (5.2) to normal form [13] 

H = l f f ( Q 2 + p 2 ) + I c 2 ( Q 2 + p 2 ) 2 + O  5 

where 05 is a set of terms, 2~-periodic in x, of a series, which is no less than the fifth degree in Q and 
P, while a and c~_ are constants where, as calculations show, 

h(xi) 
, 

h(x) = (3x 4 + 15x 2 - 2)a a + (I 5x 4 + 32x 2 + 1)(1 - x 2)2a + (2x 2 + 1)(1 - x 2)s 

If c2 ;~ 0, then, according to the Arnol 'd-Moser  theorem [11, 12], there is stability. Hence, for small 
e, satisfaction of the inequalityh(xi) ~ 0 (/--- 1, 3) is a sufficient condition for the motions of the pendulum 
in question to be stable. The last condition will not be satisfied solely for those values of a and b for 
which h(xi) = 0 and f(xi) = 0 simultaneously, where f is the polynomial from (3.2). 

We will consider the equality h(x) = 0 as a quadratic equation in a. We are only interested in positive 
roots of this equation. It can be shown that both roots are real and one of the roots is negative for all 
values ofx in the range (-1, 1). The second root is positive only for values ofx which satisfy the inequality 

Ix I< 1 ~ - 9 0  + 6 2x/2-4"9 = 0.3605 (5.4) 

We will denote this root by a(x). We have 

15x 4 + 32x 2 + ! + S(x) ¢1 - x 2)2 a(x)--  , .  

S(x) = [3(x 2 + 3)(83x 6 + 107x 4 + x 2 + 1)] ~ 

(5.5) 

Substituting (5.5) into the equalityf(x) = 0 and solving it for b we obtain 

b(x) = (x2 + 3)(21x2 - 1) + S(x) 
2(2 - 15x 2 - 3x 4) x (5.6) 

Equations (5.5) and (5.6) specify in parametric form in the regions G1 and G3 of the a, b plane (Fig. 
3) a curve on which the sufficient condition for stability h(xi) ~: 0 is not satisfied. 

For values ofx  in the range (5.4), the denominator  and numerator  of the fraction in expression (5.6) 
for b(x) are positive. Hence,  for a value x = x3 < 0, corresponding to the second type of  motion of the 
pendulum, the value ofb  is negative and, consequently, the sufficient condition h(x3) ¢ 0 for the stability 
of this motion is satisfied everywhere in the region G 3. 

We will now consider the first type of motion. For thisx = xl > 0. Hence, in the parametric equations 
of the curve h(xl) = 0, on which the sufficient condition for stability is not satisfied, the parameter  x is 
positive and satisfies condition (5.4). Taking into account the fact b < 2, we obtain an even narrower 
range of variation of the parameter: 0 < x < 0.306. Numerical analysis shows that the curve h(xl) = 0 
does not pass through the region G 3. Part of this curve, lying in the region G1, is shown in Fig. 3 by the 
dashed line. Outside the curve h(xl) = 0 inside the regions G1 and G3, the first type of pendulum motion 
is stable. For values of a and b lying on the curve h(xl) = 0 the question of the stability of this motion 
remains open. 
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